A technique to transfer metallic nanoscale patterns to small and non-planar surfaces.

نویسندگان

  • Elizabeth J Smythe
  • Michael D Dickey
  • George M Whitesides
  • Federico Capasso
چکیده

Conventional lithographic methods (e.g., electron-beam lithography, photolithography) are capable of producing high-resolution structures over large areas but are generally limited to large (>1 cm(2)) planar substrates. Incorporation of these features on unconventional substrates (i.e., small (<1 mm(2)) and/or non-planar substrates) would open possibilities for many applications, including remote fiber-based sensing, nanoscale optical lithography, three-dimensional fabrication, and integration of compact optical elements on fiber and semiconductor lasers. Here we introduce a simple method in which a thin thiol-ene film strips arbitrary nanoscale metallic features from one substrate and is then transferred, along with the attached features, to a substrate that would be difficult or impossible to pattern with conventional lithographic techniques. An oxygen plasma removes the sacrificial film, leaving behind the metallic features. The transfer of dense and sparse patterns of isolated and connected gold features ranging from 30 nm to 1 mum, to both an optical fiber facet and a silica microsphere, demonstrates the versatility of the method. A distinguishing feature of this technique is the use of a thin, sacrificial film to strip and transfer metallic nanopatterns and its ability to directly transfer metallic structures produced by conventional lithography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Analysis of Dielectric Backed Planar Conducting Layers of Arbitrarily Shaped in a Rectangular Waveguide

The characteristics of dielectric backed planar conducting layers of arbitrarily shaped in a rectangular waveguide are calculated by means of coupled integral equation technique (CIET) which accurately takes higher order mode interactions. Equivalent structures for the accurate analysis whole structure are introduced in which magnetic surface currents are identified as the unknowns at the apert...

متن کامل

A direct-write, resistless hard mask for rapid nanoscale patterning of diamond

We introduce a simple, resist-free dry etch mask for producing patterns in diamond, both bulk and thin deposited films. Direct gallium ion beam exposure of the native diamond surface to doses as low as 10 cm forms a top surface hard mask resistant to both oxygen plasma chemical dry etching and, unexpectedly, argon plasma physical dry etching. Gallium implant hard masks of nominal 50 nm thicknes...

متن کامل

Combining sonicated cold development and pulsed electrodeposition for high aspect ratio sub-10 nm gap gold dimers for sensing applications in the visible spectrum.

Strong interactions between localized surface plasmons and nanoscale objects have led to the development of highly sensitive biochemical sensing in planar metallic nanostructures with sensing performance mainly dependent on the interaction volume and the local electric field. However, the sensitivity and the interaction volume of these planar structures have been limited by the achievable aspec...

متن کامل

Near-field surface plasmon field enhancement induced by rippled surfaces

The occurrence of plasmon resonances on metallic nanometer-scale structures is an intrinsically nanoscale phenomenon, given that the two resonance conditions (i.e., negative dielectric permittivity and large free-space wavelength in comparison with system dimensions) are realized at the same time on the nanoscale. Resonances on surface metallic nanostructures are often experimentally found by p...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2009